2/27/25, 7:56 PM Preparing Multi-Container Microservices Applications for Deployment | by Mehmet Ozkaya | aspnetrun | Medium
Openinapp () Sianin

. { Ssignin to Medium with Google X
Medium Q sern

dasaradh reddy
dasaradhreddyk@gmail.com

Preparing Multi-
Microservices Applications for
Deployment

ﬂ Mehmet Ozkaya - Follow

5

¥ 2 pyblished in aspnetrun - 14 minread - Jan 13,2021

B2 Q3 L® 0

In this article, we're going to prepare our multi-container microservices
application. We will develop from scratch and create DockerFiles, Build

images and orchestrate with docker-compose yaml files.

https://medium.com/aspnetrun/preparing-multi-container-microservices-applications-for-deployment-793d60f48d31 1/30

2/27/25, 7:56 PM Preparing Multi-Container Microservices Applications for Deployment | by Mehmet Ozkaya | aspnetrun | Medium

L Jul

Azure Kubernetes
A BB LTS
Shopping.Client - 5
. MVC Shopping.API
CI/CD :
$. o6 ol
L Container
Azure registry
Pipelines
‘mongoDB

See the overall picture. You can see that we will have 3 microservices which

we are going to develop and deploy together.

Shopping MVC Client Application

First of all, we are going to develop Shopping MVC Client Application For
Consuming Api Resource which will be the Shopping.Client Asp.Net MVC
Web Project. But we will start with developing this project as a standalone
Web application which includes own data inside it. And we will add
container support with DockerFile, push docker images to Docker hub and
see the deployment options like “Azure Web App for Container” resources

for 1 web application.

Shopping API Application
After that we are going to develop Shopping.API Microservice with MongoDb

and Compose All Docker Containers.

https://medium.com/aspnetrun/preparing-multi-container-microservices-applications-for-deployment-793d60f48d31 2/30

2/27/25, 7:56 PM Preparing Multi-Container Microservices Applications for Deployment | by Mehmet Ozkaya | aspnetrun | Medium

This API project will have Products data and performs CRUD operations with
exposing api methods for consuming from Shopping Client project.
We will containerize API application with creating dockerfile and push

images to Azure Container Registry.

Mongo Db

Our API project will manage product records stored in a no-sql mongodb
database as described in the picture.
we will pull mongodb docker image from docker hub and create connection

with our API project.

At the end of the section, we will have 3 microservices whichs are

Shopping.Client — Shopping.API — MongoDb microservices.

As you can see that, we have

» Created docker images,

e Compose docker containers and tested them,

Background

This is the first article of the series. You can follow the series with below

links.

e 0- Deploying .Net Microservices

e 1- Preparing Multi-Container Microservices Applications for

Deployment

o 2- Deploying Microservices on Kubernetes

https://medium.com/aspnetrun/preparing-multi-container-microservices-applications-for-deployment-793d60f48d31 3/30

2/27/25, 7:56 PM Preparing Multi-Container Microservices Applications for Deployment | by Mehmet Ozkaya | aspnetrun | Medium

using Azure Container Registry (ACR)

* 4- Automate Deployments with CI/CD pipelines on Azure Devops

Step by Step Development w/ Course

IT & Software > Other IT 8 Software > Kubernetes

Deploying .Net Microservices with K8s, AKS
and Azure DevOps

Deploying .Net Microservices to Kubernetes, move cloud Azure Kubernetes
Services(AKS), Automating with Azure DevOps

K8s, AKS and Azure DevOps.

In this course, we're going to learn how to Deploying .Net Microservices into
Kubernetes, and moving deployments to the cloud Azure kubernetes
services (AKS) with using Azure Container Registry(ACR) and last section is
we will learn how to Automating Deployments with CI/CD pipeline of Azure
DevOps and GitHub.

Source Code

Get the Source Code from AspnetRun Microservices Github — Clone or fork
this repository, if you like don'’t forget the star. If you find or ask anything you

can directly open issue on repository.

Developing Your First Microservice

https://medium.com/aspnetrun/preparing-multi-container-microservices-applications-for-deployment-793d60f48d31 4/30

2/27/25, 7:56 PM Preparing Multi-Container Microservices Applications for Deployment | by Mehmet Ozkaya | aspnetrun | Medium

In this section we are going to Building MVC Client Application For
Consuming Api Resource which will be the Shopping.Client Asp.Net MVC
Web Project. But we will start with developing simple MVC application
before integrate with API project.

As you can see the overall picture, we are in here and start to developing
Shopping MVC Web Application project.

First, We will develop this project as a standalone Web application which
includes own data inside it. And we will add container support with
DockerFile, push docker images to Docker hub and see the deployment

options like “Azure Web App for Container” resources for 1 web application.

So in this section, we are going to develop Shopping.Client MVC application
which will be standalone web application and includes own data.

Next sections we will consume the Shopping.API project.

— First, we are going to create;
Create New Project

New Blank Solution

and Give the Name of the solution is “Shopping”

— Create Asp.Net Core Web Project :

Right Click — Add new Web Project — Asp.Net Core Web Application — Web
Application (Model-View-Controller)

— not select HTTPS

— n : Shopping.Client

— Run the application

Set a Startup Project

https://medium.com/aspnetrun/preparing-multi-container-microservices-applications-for-deployment-793d60f48d31 5/30

2/27/25, 7:56 PM Preparing Multi-Container Microservices Applications for Deployment | by Mehmet Ozkaya | aspnetrun | Medium

Change Run Profile to “Shopping.Client” and Run the application
See 5001 http port worked — http://localhost:5001

Adding Model Class into MVC Application

In Solution Explorer, select the project. Create Models folder.
Right-click the Models folder and select Add > Class. Name the class Product
and select Add.

Create Product Model into Models folder

namespace Shopping.Client.Models

{

public class Product

{

public string Id { get; set; }

public string Name { get; set; }

public string Category { get; set; }
public string Description { get; set; }
public string ImageFile { get; set; }
public decimal Price { get; set; }

}
}

Developing Shopping.Client Microservices Data Model and Context
Objects

Every microservice should have its own database, so we should create data

store for Shopping.Client Microservices.

We should create a context class which should store Discount entity objects.

So I am going to;

Create Data Folder
Add ProductContext.cs

https://medium.com/aspnetrun/preparing-multi-container-microservices-applications-for-deployment-793d60f48d31 6/30

2/27/25, 7:56 PM Preparing Multi-Container Microservices Applications for Deployment | by Mehmet Ozkaya | aspnetrun | Medium

public static class ProductContext

{

public static readonly List<Product> Products = new List<Product>
{

new Product()

{

Name = “IPhone X7,

Description = “This phone is the company’s biggest change to its
flagship smartphone in years. It includes a borderless.”,
ImageFile = “product-1.png”,

Price = 950.00M,

Category = “Smart Phone”

s

new Product()

{

Name = “Samsung 10”7,

Description = “This phone is the company’s biggest change to its
flagship smartphone in years. It includes a borderless.”,
ImageFile = “product-2.png”,

Price = 840.00M,

Category = “Smart Phone”

T

new Product()

{

Name = “Huawei Plus”,

Description = “This phone is the company’s biggest change to its
flagship smartphone in years. It includes a borderless.”,
ImageFile = “product-3.png”,

Price = 650.00M,

Category = “White Appliances”

¥,

new Product()

{

Name = “Xiaomi Mi 97,

Description = “This phone is the company’s biggest change to its

flagship smartphone in years. It includes a borderless.”,
ImageFile = “product-4.png”,

Price = 470.00M,

Category = “White Appliances”

s

new Product()

{

Name = “HTC Ull+ Plus”,

Description = “This phone is the company’s biggest change to its

flagship smartphone in years. It includes a borderless.”,
ImageFile = “product-5.png”,

Price = 380.00M,

Category = “Smart Phone”

s

new Product()

https://medium.com/aspnetrun/preparing-multi-container-microservices-applications-for-deployment-793d60f48d31 7/30

2/27/25, 7:56 PM Preparing Multi-Container Microservices Applications for Deployment | by Mehmet Ozkaya | aspnetrun | Medium

{
Name = “LG G7 ThinQ New8”,
Description = “This phone is the company’s biggest change to its

flagship smartphone in years. It includes a borderless.”,
ImageFile = “product-6.png”,

Price = 240.00M,

Category = “Home Kitchen”

}

}

}

Listing Products on Index Page of Shopping.Client Microservice

We are going to Listing Products on Index Page of Shopping.Client

Microservice.

First, we are going to update home page of MVC Application;

HomeController.cs
public IActionResult Index()

{

return View(ProductContext.Products); — ADDED parameter

}

So we have now Products on Index page, we should map this data into html
list objects.

After that, let me modify Index.cshtml

Update Index.cshtml

@model IEnumerable<Shopping.Client.Models.Product>

@{
ViewData[“Title”] = “Home Page”;

}

https://medium.com/aspnetrun/preparing-multi-container-microservices-applications-for-deployment-793d60f48d31 8/30

2/27/25, 7:56 PM Preparing Multi-Container Microservices Applications for Deployment | by Mehmet Ozkaya | aspnetrun | Medium

<h1>Products</h1>

<table class="table”>

<thead>

<tr>

<th>
@Html.DisplayNameFor (model =>
</th>

<th>
@Html.DisplayNameFor (model =>
</th>

<th>
@Html.DisplayNameFor (model =>
</th>

<th>
@Html.DisplayNameFor (model =>
</th>

<th>
@Html.DisplayNameFor (model =>
</th>

<th></th>

</tr>

</thead>

<tbody>

@foreach (var item in Model)
{

<tr>

<td>

@Html.DisplayFor (modelItem =>
</td>

<td>

@Html.DisplayFor (modelItem =>
</td>

<td>

@Html.DisplayFor (modelItem =>
</td>

<td>

@Html.DisplayFor (modelItem =>
</td>

<td>

@Html.DisplayFor (modelItem =>
</td>

</tr>

¥

</tbody>

</table>

model.Name)

model.Category)

model.Description)

model.ImageFile)

model.Price)

item.Name)

item.Category)

item.Description)

item.ImageFile)

item.Price)

Finally, we can Run the application.

Set a Startup Project

https://medium.com/aspnetrun/preparing-multi-container-microservices-applications-for-deployment-793d60f48d31

9/30

2/27/25, 7:56 PM Preparing Multi-Container Microservices Applications for Deployment | by Mehmet Ozkaya | aspnetrun | Medium

Change Run Profile to “Shopping.Client” and Run the application
See 5001 http port worked — http://localhost:5001

Create Docker Container for Shopping.Client Microservice

We are going to Create Docker Container for our Shopping.Client
Microservice. For creation docker container, we need to create Dockerfile

for our MVC Application. This is very easy to use vs tooling.

First, we are going to Add Docker Support on our vs solution;

Right click — Add Docker Support — Linux

So this operation, create a new Dockerfile for us.
Let’s see the Dockerfile

Examine DockerFile

The Dockerfile file, which we will make the necessary settings for Docker,

automatically appears.

The purpose of creating the Dockerfile file; When we ask docker to extract
the image of our project, it will search for a file named “Dockerfile” in the

project. This will make our application work according to the settings in our
file.

See file;

FROM mcr.microsoft.com/dotnet/aspnet:5.0-buster-slim AS base
WORKDIR /app

EXPOSE 80

EXPOSE 443

FROM mcr.microsoft.com/dotnet/sdk:5.0-buster-slim AS build
WORKDIR /src

https://medium.com/aspnetrun/preparing-multi-container-microservices-applications-for-deployment-793d60f48d31 10/30

2/27/25, 7:56 PM Preparing Multi-Container Microservices Applications for Deployment | by Mehmet Ozkaya | aspnetrun | Medium
COPY [“Shopping.Client/Shopping.Client.csproj”, “Shopping.Client/”]
RUN dotnet restore “Shopping.Client/Shopping.Client.csproj”
COPY .
WORKDIR “/src/Shopping.Client”
RUN dotnet build “Shopping.Client.csproj” -c Release -o /app/build

FROM build AS publish
RUN dotnet publish “Shopping.Client.csproj” -c Release -o
/app/publish

FROM base AS final

WORKDIR /app

COPY — from=publish /app/publish .
ENTRYPOINT [“dotnet”, “Shopping.Client.dll”]

Dockerfile consists of 2 main parts. The first is to build the application and

the second is to run the application. If we look at what the commands are in
the file;

FROM part where the base image is specified in whichever library the FROM

project is used in. We will use dotnet 5 SDK image in this project.

WORKDIR It is the part where we specify the folder under which the docker

container will copy the files of our project.

COPY is the command used to copy project files from local file system to
image. In our project, we will first copy and restore the csproj file, then copy
all these files again and create our application by running the dotnet publish

command.

RUN: It is used for commands that need to run while Docker containers are
being prepared. First, it is ensured that the build is taken and then it is
published.

https://medium.com/aspnetrun/preparing-multi-container-microservices-applications-for-deployment-793d60f48d31 11/30

2/27/25, 7:56 PM Preparing Multi-Container Microservices Applications for Deployment | by Mehmet Ozkaya | aspnetrun | Medium

ENTRYPOINT is the command that we specify the first command and
parameters that will run when the container is up. While the container is

running, DockerExample.dll will be executed with the dotnet command.

Check Output Logs
Once we added Docker Support, in output its automatilcy build docker

images

Check docker images output logs

Starting up container(s)..

docker build -f
“C:\Users\ezozkme\source\repos\swnzen\swnzen\Shopping.Client\Dockerfi
le” — force-rm -t shoppingclient:dev — target base — label
“com.microsoft.created-by=visual-studio” — label
“com.microsoft.visual-studio.project-name=Shopping.Client”
“C:\Users\ezozkme\source\repos\swnzen\swnzen”

Sending build context to Docker daemon 4.386MB

Step 1/6 : FROM mcr.microsoft.com/dotnet/aspnet:5.0-buster-slim AS
base

— -> 5f9a6a778eac

Step 2/6 : WORKDIR /app

— => Running in d7b126c¢32d92

Removing 1intermediate container d7b126c32d92

— => d23b0bf721d8

Step 3/6 : EXPOSE 80

— => Running in 39654ab99d8b

Removing intermediate container 39654ab99d8b

— -> 4c66963a83fe

Step 4/6 : EXPOSE 443

— => Running 1in efbdcf6019d2

Removing intermediate container efbdcf6019d2

— -> 6588782bebb6

Step 5/6 : LABEL com.microsoft.created-by=visual-studio
— => Running 1in 839428470229

Removing intermediate container 8394a8470229

— -> 4a876be8al55

Step 6/6 : LABEL com.microsoft.visual-studio.project-
name=Shopping.Client

— => Running in 2861da6elc69

https://medium.com/aspnetrun/preparing-multi-container-microservices-applications-for-deployment-793d60f48d31 12/30

2/27/25, 7:56 PM Preparing Multi-Container Microservices Applications for Deployment | by Mehmet Ozkaya | aspnetrun | Medium

Removing intermediate container 2861da6elc69
— —=> 377350c2cl97

— As you can see that run “docker build” command. we can also run

manually. But vs has great tooling experience for docker support.

Push Docker Hub Container Registry to Shopping.Client Microservice
Docker Image
We are going to Push Docker Hub Container Registry to Shopping.Client

Microservice Docker Image.

We should login the docker over the command line. Before push the image

we should login the system.

e Login Docker

e before push
docker login
username

pass

docker login

Login with your Docker ID to push and pull images from Docker Hub. If
you don’t have a Docker ID, head over to https://hub.docker.com to
create one.

Username: mehmetozkaya

Password:

Login Succeeded

Tag Docker Image For Docker Hub

Before push the image, the image should have tag, so we should tag the

image. It is mandatory step to apply tag for image that will be push to Docker

https://medium.com/aspnetrun/preparing-multi-container-microservices-applications-for-deployment-793d60f48d31 13/30

2/27/25, 7:56 PM Preparing Multi-Container Microservices Applications for Deployment | by Mehmet Ozkaya | aspnetrun | Medium

Hub or any container registry, the image should have tag.

We are going to Tag from “lastest” one not dev one. That means ready for

production deployment tag.

Lets check existing image;

docker 1images

REPOSITORY TAG IMAGE ID CREATED SIZE
shoppingclient latest cc2a573482cf 45 minutes ago 210MB

If there is no latest tag shoppingclient, you can create with Running VS
release mod on Docker run profile. Otherwise you can also make it manually

with docker build commands.

So once we see the latest shoppingclient docker image, we should tag the

lastest one with dockerhub repo name;

docker tag cc2 mehmetozkaya/swnzen

As you can see that we give the name exactly same as with docker hub

repository profile, otherwise it can’t match when push docker hub.

Let check now;

docker images

https://medium.com/aspnetrun/preparing-multi-container-microservices-applications-for-deployment-793d60f48d31 14/30

2/27/25, 7:56 PM Preparing Multi-Container Microservices Applications for Deployment | by Mehmet Ozkaya | aspnetrun | Medium

REPOSITORY TAG
shoppingclient

IMAGE ID CREATED SIZE
latest cc2a573482cf 46 minutes ago 210MB

mehmetozkaya/swnzen latest cc2a573482cf 46 minutes ago 210MB

see its tagged.

Push Docker Hub

docker push mehmetozkaya/swnzen:latest

The push refers to repository [docker.io/mehmetozkaya/swnzen]

b57cdc9e8ec8:
d066a90ababs:
024230939f4e:
ea4l24eb3c7e:
8ed87eel78f4:
58.3MB/75.66MB
0916aa79e133:

28.54MB/41.33MB

87c8al1d8f54f:

Pushed
Pushed
Pushed
Pushed

Pushing [::::::::::::::::::::::::::::::::::>]

Pushing [====================>] 28.68MB/69.23MB

It takes some time. When we push the image docker search for the tag name

exist then push the image to the docker hub.

See DockerHub

As you can see that we can successfully push our image to docker hub.

mehmetozkaya/swnzen

Last pushed: 12 minutes ago

As you can see that we have pushed the our shopping.client image to the

DockerHub successfully.

https://medium.com/aspnetrun/preparing-multi-container-microservices-applications-for-deployment-793d60f48d31

15/30

2/27/25, 7:56 PM Preparing Multi-Container Microservices Applications for Deployment | by Mehmet Ozkaya | aspnetrun | Medium
Developing Shopping.API Microservice with MongoDb and
Compose All Docker Containers

In this section, we are going to develop Shopping.API Microservice with
MongoDb and Compose All Docker Containers.
At the end of the section, we will have 3 microservices whichs are

Shopping.Client — Shopping.API — MongoDb microservices.

We have developed Shopping.Client and now we are going to start with
developing the Shopping.API project.
This API project will have Products data and performs CRUD operations with

exposing api methods for consuming from clients.

Iﬂ. :ﬂ. Azure Kubernetes
/ mﬂg]gg}. Service (AKS)
s il N
Shopping.Client : |
' MVG Shopping.API
CI/CD
. oG o6
, Container
Azure registry
Pipelines
.mongoDB

Our API project will manage product records stored in a no-sql mongodb

database as described in the picture.

https://medium.com/aspnetrun/preparing-multi-container-microservices-applications-for-deployment-793d60f48d31 16/30

2/27/25, 7:56 PM Preparing Multi-Container Microservices Applications for Deployment | by Mehmet Ozkaya | aspnetrun | Medium

First we will develop API project which using Mongo providers.

After that, we will pull mongodb docker image from docker hub and create
connection with our API project.

And of course, we will refactor Shopping.Client MVC application, instead of
using hard value Product list, Shopping Client will consume Products from

API project.

Create Asp.Net Core Web API Project For Shopping.API Microservice

First, we are going to create;

Create Asp.Net Core Web API Project :
Right Click Solution — Add new Web API — NO HTTPS — name :
Shopping.API

Create Product Controller Class for Shopping.API Microservice

We are going to create a new web api project For Shopping.API Microservice.

Go to Controller folder
Add ProductController class

[ApiController]
[Route(“[controller]”)]
public class ProductController : ControllerBase

{

private readonly ILogger<ProductController> _logger;

public ProductController (ILogger<ProductController> logger)

{
_logger = logger;
}

Run application

Change Run Profile to “Shopping.API” and Run the application

https://medium.com/aspnetrun/preparing-multi-container-microservices-applications-for-deployment-793d60f48d31 17/30

2/27/25, 7:56 PM Preparing Multi-Container Microservices Applications for Deployment | by Mehmet Ozkaya | aspnetrun | Medium

swagger and

https://localhost:5000/product

Consume Shopping.API from Shopping.Client Microservices with using
HttpClientFactory

We are going to Consume Shopping.API from Shopping.Client Microservices

with using HttpClientFactory Object.

First, We should go to Shopping.Client Project.
Locate Startup.cs

We will use http client factory, Add register http client into Aspnet DI;

public void ConfigureServices(IServiceCollection services)

{
services.AddHttpClient (“ShoppingAPIClient”, client =>

{
client.BaseAddress = new Uri(“http://localhost:5000/”); //

Shopping.API url
1)

services.AddControllersWithViews();

}

After that we are going to Inject HttpClient into home controller in order to

consume API project when retrieving products data.

public class HomeController : Controller

{
private readonly HttpClient _httpClient;

private readonly ILogger<HomeController> _logger;

public HomeController (IHttpClientFactory httpClientFactory,
ILogger<HomeController> logger)

{

_logger = logger ?? throw new ArgumentNullException(nameof(logger));

https://medium.com/aspnetrun/preparing-multi-container-microservices-applications-for-deployment-793d60f48d31 18/30

2/27/25, 7:56 PM Preparing Multi-Container Microservices Applications for Deployment | by Mehmet Ozkaya | aspnetrun | Medium

_httpClient = httpClientFactory.CreateClient(“ShoppingAPIClient”);
}

After that, we are going to Implement Index Get method with calling

/products api from shopping.api project.

public async Task<IActionResult> Index()

{

var response = await _httpClient.GetAsync(“/product”);

var content = await response.Content.ReadAsStringAsync();

var productlList =
JsonConvert.DeserializeObject<IEnumerable<Product>>(content); —
Install latest Newtonsoft software

return View(productList);

}

Setup Mongo Docker Database

In this section we are going to Setup Mongo Docker Database. We are in here
and finished to development of Shopping MVC and Shopping.API project.
Now its time to create a real database which is no-sql mongo db. After that

we will create connection from API project.

Setup Mongo Docker Database for Shopping.API Microservices

First, We should go to DockerHub and find mongodb official image.

Setup mongodb docker

Go to docker hub mongo image

Examine documentations, ports and so on.

Pull the mongo docker image in your local docker.

https://medium.com/aspnetrun/preparing-multi-container-microservices-applications-for-deployment-793d60f48d31 19/30

2/27/25, 7:56 PM Preparing Multi-Container Microservices Applications for Deployment | by Mehmet Ozkaya | aspnetrun | Medium

docker pull mongo

Run and Start mongodb
docker run -d -p 27017:27017 — name shopping-mongo mongo

See that we are forwarding the same port — 27017.

For troubleshooting, we have same commands;

docker logs -f shopping-mongo

docker exec -it shopping-mongo /bin/bash

Dockerize Microservices with Creating Multi-Container App
using Docker Compose

In this section we are going to Dockerize all Microservices with Creating

Multi-Container App using Docker Compose.

Docker Compose is a Docker tool that enables complex applications to be
defined and run. With Docker Compose, you can make multiple container
definitions in a single file, and run the application by raising all the
requirements your application needs with a single command.

We have finished to developments of our microservices on local also test it.
So before we deploy these microservices, we are going to create docker

images and test on docker container environment.

You'll learn how to manage more than one container and communicate
between them when using Container Tools in Visual Studio.
Managing multiple containers requires container orchestration and requires

an orchestrator such as Docker Compose, Kubernetes, or Service Fabric.

https://medium.com/aspnetrun/preparing-multi-container-microservices-applications-for-deployment-793d60f48d31 20/30

2/27/25, 7:56 PM Preparing Multi-Container Microservices Applications for Deployment | by Mehmet Ozkaya | aspnetrun | Medium

Here, we’ll use Docker Compose. Docker Compose is great for local

debugging and testing in the project of the development cycle.

Adding Docker-Compose File for Shopping Microservices Solution

We are going to add Docker-Compose File for Shopping Microservices
Solution. First, We should go Shopping.API project. As you know that we
have already created DockerFile for Shopping.Client appliction before.
So now we need to add for Shopping.API.

But this time we also need orcestration with Client-API and mongodb, so

thats why we need to create docker-compose with dockerfile.

In the Shopping.API project,

choose Add > Container Orchestrator Support.
The Docker Support Options dialog appears.
Choose Docker Compose.

Choose Linux.

DockerFile and docker-compose created.

Visual Studio creates a docker-compose.yml and override file in the docker-
compose node in the solution,
and that project shows in boldface font, which shows that it's now the startup

project.

See the file;

docker-compose.yml
version: ‘3.4’

services:
shopping.api:

https://medium.com/aspnetrun/preparing-multi-container-microservices-applications-for-deployment-793d60f48d31 21/30

2/27/25, 7:56 PM Preparing Multi-Container Microservices Applications for Deployment | by Mehmet Ozkaya | aspnetrun | Medium

image: ${DOCKER_REGISTRY-}shoppingapi
build:

context:

dockerfile: Shopping.API/Dockerfile

docker-compose.override.yml
version: ‘3.4’

services:

shopping.api:

environment:

— ASPNETCORE_ENVIRONMENT=Development

— ASPNETCORE_URLS=https://+:443;http://+:80
ports:

— “8077

— %443”

volumes:
— S{APPDATA}/ASP.NET/Https:/root/.aspnet/https:ro

Docker Compose file defines all the services to be deployed in docker
environment. These services rely on either a DockerFile or an existing
container image.

In our case we have also Shopping.Client application, we already created
DockerFile but also we need to add into docker compose file.

For that purpose, you can add manually in these file like API projects but I

would like to generate from Visual studio.

In the Shopping.Client project,
again right-click on the project node,
choose Add > Container Orchestrator Support.

Choose Docker Compose, and then select the Linux.

Visual Studio makes changes to your docker compose YML file. Now both

services are included.

https://medium.com/aspnetrun/preparing-multi-container-microservices-applications-for-deployment-793d60f48d31 22/30

2/27/25, 7:56 PM Preparing Multi-Container Microservices Applications for Deployment | by Mehmet Ozkaya | aspnetrun | Medium

As you can see that, we have created docker-compose and add 2

microservices configuration but 1 more left. we will add Mongodb database.

Run multi-container application with Docker Compose

We are going to Run multi-container application with Docker Compose.

We need to Run docker-compose

we have 2 options

1- Close all dockers and run with below command on that location;

docker-compose -f docker-compose.yml -f docker-compose.override.yml up
— build

2- Run visual studio docker-compose run — actualy its also run the same

command

choose option 2
Set a Startup Project for docker-compose file
Click Run button

See output window

1>docker-compose -f
“C:\Users\ezozkme\source\repos\swnzen\swnzen\docker-compose.yml” -f
“C:\Users\ezozkme\source\repos\swnzen\swnzen\docker-
compose.override.yml” -p dockercomposel2550600008089957795 — no-ansi
config

It Worked !!

https://medium.com/aspnetrun/preparing-multi-container-microservices-applications-for-deployment-793d60f48d31 23/30

2/27/25, 7:56 PM Preparing Multi-Container Microservices Applications for Deployment | by Mehmet Ozkaya | aspnetrun | Medium

Also right click — clean solution — it run docker-compose down command

and stop docker ps

docker-compose -f
“C:\Users\ezozkme\source\repos\swnzen\swnzen\docker-compose.yml” -f
“C:\Users\ezozkme\source\repos\swnzen\swnzen\docker-
compose.override.yml” -f
“C:\Users\ezozkme\source\repos\swnzen\swnzen\obj\Docker\docker-
compose.vs.debug.partial.g.yml” -p dockercomposel2550600008089957795
— no-ansi down — rmi local — remove-orphans

See the generated images;

docker ps

C:\Users\ezozkme>docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

52b980eeladd shoppingclient:dev “tail -f /dev/null” 27 minutes ago Up
27 minutes 443/tcp, 0.0.0.0:8001->80/tcp shoppingclient

Cc784cQe0a7f5 shoppingapi:dev “tail -f /dev/null” 27 minutes ago Up 27
minutes 443/tcp, 0.0.0.0:8000->80/tcp shoppingapi

c86d72bflebb mongo “docker-entrypoint.s..” 27 minutes ago Up 27
minutes 0.0.0.0:27017->27017/tcp shoppingdb

Test application

http://localhost:8000/swagger/index.html
http://localhost:8000/product

As you can see that, we have finally dockerize all microservices and running

on our local machines. Next article we are going to talk about Kubernetes.

For the next articles ->

https://medium.com/aspnetrun/preparing-multi-container-microservices-applications-for-deployment-793d60f48d31 24/30

2/27/25, 7:56 PM Preparing Multi-Container Microservices Applications for Deployment | by Mehmet Ozkaya | aspnetrun | Medium

o 2- Deploying Microservices on Kubernetes

References

https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/

https://medium.com/batech/docker-nedir-docker-kavramlar%C4%B1-
avantajlar%C4%B1-901b37742ee0

https://www.mediaclick.com.tr/tr/blog/docker-nedir-docker-ne-ise-yarar
https://www.docker.com/resources/what-containe

Microservices Docker Docker Compose Kubernetes Azure Container Registry

& Published in aspnetrun C)

597 Followers - Last published Apr 20, 2021

The best path to leverage your aspnet skills. Onboarding to .Net Software
Architect jobs. Developing production-ready enterprise .Net applications with
applying latest architectures and best practices.

@ Written by Mehmet Ozkaya C)

8.3K Followers - 325 Following

Software Architect | Udemy Instructor | AWS Community Builder | Cloud-Native
and Serverless Event-driven Microservices https://github.com/mehmetozkaya

https://medium.com/aspnetrun/preparing-multi-container-microservices-applications-for-deployment-793d60f48d31 25/30

2/27/25, 7:56 PM Preparing Multi-Container Microservices Applications for Deployment | by Mehmet Ozkaya | aspnetrun | Medium

Responses (3)
What are your thoughts?
% Haseeb Awan o
Apr 11,2022
hello

€9 Reply

g Haseeb Awan .
Apr 11,2022
Product

hello

&) Reply

=l 't Ruben Veldman
Oct 5, 2021 (edited)

For everyone that, just like me, want to copy paste the ProductContext.cs, without errors:
using Shopping.Client.Models;

using System.Collections.Generic;

namespace Shopping.Client.Data

{

public class ProductContext

{

public static readonly List<Product>... more

https://medium.com/aspnetrun/preparing-multi-container-microservices-applications-for-deployment-793d60f48d31 26/30

2/27/25, 7:56 PM Preparing Multi-Container Microservices Applications for Deployment | by Mehmet Ozkaya | aspnetrun | Medium
) Reply

More from Mehmet Ozkaya and aspnetrun

Application _’_ o LISt
Product Module Order Module
1 Basket Module Payment Module M el s & T @
ane X 1] Phone m@
Shipment Module Reporting Module 5 0 Phone
; : 1sung 10 0 Phone
In Design Microservices Architectur... by Mehme... 2 |n aspnetrun by Mehmet Ozkaya
Microservices Killer: Modular Layered Architecture with ASP.NET
Monolithic Architecture Core, Entity Framework Core and...
In this article, we are going to learn Modular This article explains aspnetrun core
Monolithic Architecture and Best Practices... repository of github. This series of articles...

Feb16,2023 472 @ 10

N

Dec13,2019 W289 @6 N

- wm wp e 1
--- : Microservices Sync Communication 1
z i i i
f : [} :

- H I
' Shopping.Client | H g Basket . Pricing :
mvc ' 1 '
{ H | [

Cl/co i A _ i i

5 - = : slenr | Http / gRPC -
' o2 ‘ s =4 r\ i !
ﬂ " d—) % - % : Request/Responses :
Container L 4 : :
Azure : regist e \ I
Pipelines G : Order :
‘ mongoDB ' '
\ |
~ \ I
- e e L S o S S s 4

|n aspnetrun by Mehmet Ozkaya

& In Design Microservices Architectur.. by Mehme...

https://medium.com/aspnetrun/preparing-multi-container-microservices-applications-for-deployment-793d60f48d31 27/30

2/27/25, 7:56 PM Preparing Multi-Container Microservices Applications for Deployment | by Mehmet Ozkaya | aspnetrun | Medium

Deploying Microservices on Microservices Communications
Kubernetes In this article, we're going to learn
In this article, we are going to Deploy our Microservices Communications. We will lear...

Shopping Microservices on Kubernetes....

Jan14,2021 W13 @ 3 (1 Sep7,2021 W13K @ 11 N

<See all from Mehmet Ozkaya) CSee all from aspnetrun)

Recommended from Medium

Adapter maaptee

) (External
Client (Converts requests to Incompatible
(Original form of be compatible)
|

request)

=

', Client needs to get the service from Adaptee, which is incompatible &
cannot interact directly

. In Artificial Intelligence in Plain Engl... by Amit Sin... a Ravi Patel

Service-Oriented Architecture Understanding the Adapter

(SOA) vs. Microservices Pattern: A Comprehensive Guide...

In today’s fast-evolving tech landscape, Design patterns are critical for solving

building scalable, maintainable, and flexible... common software design challenges and...
Sep26,2024 W 184 @2 N Sep 23,2024 N

https://medium.com/aspnetrun/preparing-multi-container-microservices-applications-for-deployment-793d60f48d31 28/30

2/27/25, 7:56 PM Preparing Multi-Container Microservices Applications for Deployment | by Mehmet Ozkaya | aspnetrun | Medium
Lists

oo Coding & Development Natural Language Processing

1958 stories - 1602 saves

L 11 stories - 1018
o= = stories saves

Monolithic Architecture Microservice Architecture

& A zeynali < Vinotech
10 Must-Know Cloud Native Monolithic and Microservice
Architecture Patterns Architectures in Spring Boot
Sidecar/Sidekick, Ambassador, Monolithic architecture
Scatter/Gather, BFF, Anti-Corruption Layer,...

Jan18 W52 @1 (1 Sep 30,2024 W) 51 N

'H’ Terrafor ’i" slack
Github Actions sonarqube\\\Tb %
it mmcdfmmym
=& s &
django @
f In Django Unleashed by Joel Wembo @ Ramesh Fadatare

Technical Guide: End-to-End CI/CD 5 Microservices Design Patterns

DevOps with Jenkins, Dockert,... You Must Know in 2025
Building an end-to-end CI/CD pipeline for Here are five important microservices design
Django applications using Jenkins, Docker,... patterns you should know in 2025, explained...

https://medium.com/aspnetrun/preparing-multi-container-microservices-applications-for-deployment-793d60f48d31 29/30

2/27/25, 7:56 PM Preparing Multi-Container Microservices Applications for Deployment | by Mehmet Ozkaya | aspnetrun | Medium

Apri3,2024 W12K @ 21 N Jan25 W223 @2 N

(See more recommendations)

https://medium.com/aspnetrun/preparing-multi-container-microservices-applications-for-deployment-793d60f48d31 30/30

